Javascript required
Skip to content Skip to sidebar Skip to footer

Multiplication Property of Continuous Time Fourier Transform

Signals and Systems – Multiplication Property of Fourier Transform


For a continuous-time function $\mathit{x(t)}$, the Fourier transform of $\mathit{x(t)}$ can be defined as

$$\mathrm{\mathit{X\left ( \omega \right )\mathrm{\mathrm{=}}\int_{-\infty }^{\infty }x\left ( t \right )e^{-j\omega t}dt}}$$

And the inverse Fourier transform is defined as,

$$\mathrm{\mathit{F^{\mathrm{-1}}\left [ X\left ( \omega \right ) \right ]\mathrm{\mathrm{=}}x\left ( t \right )\mathrm{\mathrm{=}}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X\left ( \omega \right )e^{j\omega t}d\omega }}$$

Multiplication Property of Fourier Transform

Statement – The multiplication property of continuous-time Fourier transform (CTFT) states that the multiplication of two functions in time domain is equivalent to the convolution of their spectra in the frequency domain. The multiplication property is also called frequency convolution theorem of Fourier transform. Therefore, if

$$\mathrm{\mathit{x_{\mathrm{1}}(t)\overset{FT}{\leftrightarrow}X_{\mathrm{1}}\left ( \omega \right )\: \mathrm{and} \: x_{\mathrm{2}}(t)\overset{FT}{\leftrightarrow}X_{\mathrm{2}}\left ( \omega \right )} }$$

Then, according to the multiplication property,

$$\mathrm{\mathit{x_{\mathrm{1}}(t)\cdot x_{\mathrm{1}}(t)\overset{FT}{\leftrightarrow}\frac{\mathrm{1}}{\mathrm{2}\pi }\left [ X_{\mathrm{1}}\left ( \omega \right )\ast X_{\mathrm{2}}\left ( \omega \right ) \right ]}}$$

Proof

From the definition of Fourier transform, we have,

$$\mathrm{\mathit{F\left [ x\left ( t \right ) \right ]\mathrm{\mathrm{=}}X\left ( \omega \right )\mathrm{\mathrm{=}}\int_{-\infty }^{\infty}x\left ( t \right )e^{-j\omega t}dt}}$$

$$\mathrm{\mathit{\therefore F\left [ x_{\mathrm{1}}\left ( t \right )\cdot x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\mathrm{=}}\int_{-\infty }^{\infty}\left [ x_{\mathrm{1}}\left ( t \right )\cdot x_{\mathrm{2}}\left ( t \right ) \right ]e^{-j\omega t}dt}}$$

Now, from the definition of inverse Fourier transform, we have,

$$\mathrm{\mathit{\Rightarrow F\left [ x_{\mathrm{1}}\left ( t \right )\cdot x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\mathrm{=}}\int_{-\infty }^{\infty}\left [\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{-\infty }^{\infty }X_{\mathrm{1}}\left ( p \right )e^{jpt} dp \right ]x_{\mathrm{2}}\left ( t \right )e^{-j\omega t}dt}}$$

By interchanging the order of integration in RHS of the above expression, we get,

$$\mathrm{\mathit{\Rightarrow F\left [ x_{\mathrm{1}}\left ( t \right )\cdot x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\mathrm{=}}\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{-\infty }^{\infty }X_{\mathrm{1}}\left ( p \right )\left [\int_{-\infty }^{\infty} x_{\mathrm{2}}\left ( t \right )e^{jpt}e^{-j\omega t}dt \right ]dp}}$$

$$\mathrm{\mathit{\Rightarrow F\left [ x_{\mathrm{1}}\left ( t \right )\cdot x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\mathrm{=}}\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{-\infty }^{\infty }X_{\mathrm{1}}\left ( p \right )\left [\int_{-\infty }^{\infty} x_{\mathrm{2}}\left ( t \right )e^{-j\left ( \omega -p \right )t}dt \right ]dp}}$$

$$\mathrm{\mathit{\Rightarrow F\left [ x_{\mathrm{1}}\left ( t \right )\cdot x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\mathrm{=}}\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{-\infty }^{\infty }X_{\mathrm{1}}\left ( p \right )X_{\mathrm{2}}\left ( \omega -p \right )dp}}$$

$$\mathrm{\mathit{\therefore F\left [ x_{\mathrm{1}}\left ( t \right )\cdot x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\mathrm{=}}\frac{\mathrm{1}}{\mathrm{2}\pi}\left [ X_{\mathrm{1}}\left ( \omega \right )\ast X_{\mathrm{2}}\left ( \omega \right ) \right ]}}$$

Or, it can also be represented as,

$$\mathrm{\mathit{x_{1}\left ( t \right )\cdot x_{\mathrm{1}}\left ( t \right )\overset{FT}{\leftrightarrow} \frac{\mathrm{1}}{\mathrm{2}\pi}\left [ X_{\mathrm{1}}\left ( \omega \right )\ast X_{\mathrm{2}}\left ( \omega \right ) \right ]}}$$

Also,

$$\mathrm{\mathit{\mathrm{2}\pi\left [ x_{\mathrm{1}}\left ( t \right )\cdot x_{\mathrm{1}}\left ( t \right ) \right ]\overset{FT}{\leftrightarrow} \left [ X_{\mathrm{1}}\left ( \omega \right )\ast X_{\mathrm{2}}\left ( \omega \right ) \right ]}}$$

$$\mathrm{\mathit{\Rightarrow \left [ x_{\mathrm{1}}\left ( t \right )\cdot x_{\mathrm{1}}\left ( t \right ) \right ]\overset{FT}{\leftrightarrow} \left [ X_{\mathrm{1}}\left ( f \right )\ast X_{\mathrm{2}}\left ( f \right ) \right ];\; \; \left ( \because f\mathrm{\mathrm{=}}\frac{\omega }{\mathrm{2}\pi } \right )}}$$

Numerical Example

Using Multiplication property of Fourier transform, find the Fourier transform of the function given as,

$$\mathrm{\mathit{x\left ( t \right )\mathrm{\mathrm{=}}\left [ u(t\mathrm{\mathrm{\mathrm{\mathrm{+}}}}\mathrm{2})-u\left ( t-\mathrm{2} \right ) \right ]\cos \mathrm{2}\pi t}} $$

Solution

From the definition of Fourier transform of cosine function, we get,

$$\mathrm{\mathit{F\left[ \cos \mathrm{2}\pi t \right ]\mathrm{\mathrm{=}}\pi \delta \left ( \omega -\mathrm{2}\pi \right )\mathrm{\mathrm{\mathrm{+}}}\pi \delta \left ( \omega \mathrm{\mathrm{\mathrm{+}}}\mathrm{2}\pi \right )}}$$

And by the definition of Fourier transform of unit step function, we have,

$$\mathrm{\mathit{F\left [ u\left ( t\mathrm{\mathrm{\mathrm{+}}}\mathrm{2} \right )-u\left ( t-\mathrm{2} \right ) \right ]\mathrm{\mathrm{=}}\int_{-\mathrm{2}}^{\mathrm{2}}\mathrm{1}\cdot e^{-j\omega t\: }dt\mathrm{\mathrm{=}}\left [ \frac{e^{-j\omega t}}{-j\omega} \right ]_{-\mathrm{2}}^{\mathrm{2}}}} $$

$$\mathrm{\Rightarrow \mathit{F\left [ u\left ( t\mathrm{\mathrm{\mathrm{+}}}\mathrm{2} \right )-u\left ( t-\mathrm{2} \right ) \right ]\mathrm{\mathrm{=}}\left [ \frac{e^{-j\mathrm{2}\omega }-e^{j\mathrm{2}\omega }}{-j\omega } \right ]\mathrm{\mathrm{=}}\left [ \frac{e^{j\mathrm{2}\omega }-e^{-j\mathrm{2}\omega }}{j\omega } \right ]}}$$

$$\mathrm{\Rightarrow \mathit{F\left [ u\left ( t\mathrm{\mathrm{\mathrm{+}}}\mathrm{2} \right )-u\left ( t-\mathrm{2} \right ) \right ]\mathrm{\mathrm{=}}\left [ \frac{\mathrm{2}\left ( e^{j\mathrm{2}\omega }-e^{-j\mathrm{2}\omega } \right )}{\mathrm{2}j\omega } \right ]\mathrm{\mathrm{=}}\frac{\mathrm{4}\: \sin \mathrm{2}\omega }{\mathrm{2}\omega }\mathrm{\mathrm{=}}\mathrm{4}\: \sin c(\mathrm{2}\omega )}}$$

Now, the Fourier transform of the given function is,

$$\mathrm{\mathit{F\left [ x\left ( t \right ) \right ]\mathrm{\mathrm{=}}F\left [ \left [ u\left ( t\mathrm{\mathrm{\mathrm{+}}}\mathrm{2} \right )-u\left ( t-\mathrm{2} \right ) \right ]\cos \mathrm{2}\pi t \right ]}}$$

By using the multiplication property $\mathrm{\mathit{\left [ i.e.,\: \: x_{\mathrm{1}}\left ( t \right )\cdot x_{\mathrm{1}}\left ( t \right )\overset{FT}{\leftrightarrow}\frac{\mathrm{1}}{\mathrm{2}\pi }\left [ X_{\mathrm{1}}\left ( \omega \right )\ast X_{\mathrm{2}}\left ( \omega \right ) \right ] \right ]}}$ of Fourier transform, we have,

$$\mathrm{\mathit{X\left ( \omega \right )\mathrm{\mathrm{=}}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty}\frac{\mathrm{4}\sin \mathrm{2}p}{\mathrm{2}p}\left [ \pi \delta \left ( \omega-\mathrm{2}\pi -p \right ) \mathrm{\mathrm{\mathrm{+}}} \pi \delta \left ( \omega\mathrm{\mathrm{\mathrm{+}}}\mathrm{2}\pi -p \right )\right ]dp}}$$

$$\mathrm{\Rightarrow \mathit{X\left ( \omega \right )\mathrm{\mathrm{=}}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty}\frac{\mathrm{4}\sin \mathrm{2}p}{\mathrm{2}p}\: \pi \delta \left ( \omega-\mathrm{2}\pi -p \right )dp\mathrm{\mathrm{\mathrm{+}}}\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{-\infty }^{\infty}\frac{\mathrm{4}\sin \mathrm{2}p}{\mathrm{2}p}\: \pi \delta \left ( \omega\mathrm{\mathrm{+}}\mathrm{2}\pi -p \right )dp }}$$

$$\mathrm{\Rightarrow \mathit{X\left ( \omega \right )\mathrm{\mathrm{=}} \frac{\mathrm{2}\sin \mathrm{2}\left ( \omega -\mathrm{2}\pi \right )}{\mathrm{2}\left ( \omega -\mathrm{2}\pi \right )}\mathrm{\mathrm{\mathrm{+}}}\frac{\mathrm{2}\sin \mathrm{2}\left ( \omega \mathrm{\mathrm{+}}\mathrm{2}\pi \right )}{\mathrm{2}\left ( \omega \mathrm{\mathrm{+}}\mathrm{2}\pi \right)}}}$$

$$\mathrm{\therefore \mathit{F\left [ x\left ( t \right ) \right ]\mathrm{\mathrm{=}}X\left ( \omega \right )\mathrm{\mathrm{=}}\mathrm{2}\sin c\left [ \mathrm{2}\left ( \omega -\mathrm{2}\pi \right ) \right ]\mathrm{\mathrm{+}}\mathrm{2}\sin c\left [ \mathrm{2}\left ( \omega \mathrm{\mathrm{+}}\mathrm{2}\pi \right ) \right ] }}$$

raja

Updated on 17-Dec-2021 07:20:33

  • Related Questions & Answers
  • Signals and Systems – Fourier Transform of Periodic Signals
  • Signals and Systems – Time-Reversal Property of Fourier Transform
  • Signals and Systems – Time-Shifting Property of Fourier Transform
  • Signals and Systems – Time Integration Property of Fourier Transform
  • Signals & Systems – Duality Property of Fourier Transform
  • Signals & Systems – Conjugation and Autocorrelation Property of Fourier Transform
  • Signals and Systems – Table of Fourier Transform Pairs
  • Signals and Systems: Multiplication of Signals
  • Signals and Systems – Properties of Discrete-Time Fourier Transform
  • Signals and Systems – Relation between Discrete-Time Fourier Transform and Z-Transform
  • Signals and Systems – Linearity Property of Laplace Transform
  • Signals and Systems – Z-Transform of Sine and Cosine Signals
  • Signals and Systems – Properties of Laplace Transform
  • Modulation Property of Fourier Transform
  • Signals and Systems – Relation between Laplace Transform and Z-Transform

seewatich35.blogspot.com

Source: https://www.tutorialspoint.com/signals-and-systems-multiplication-property-of-fourier-transform